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ABSTRACT
In order to determine the aeffectiveaness of multidimensional

acaling (MDS) in recovering the dimenaionality of a set of

dichotomously-acored itema, data were simnulataed in one, two, and
three dimenaions for a variety of correlationa with the

underlying latent trait. Similarity matrices were constructed

theae data uasing. threa ngrgingsaﬂg;tivg,and'thrag margin=

from
free coefficients and used as input to MDS. Stress (S31), Si by

dimension plota, and plota of the acaled itema were examined to
determine the effect of varying the magnitude and pattern of

he results suggested that items with similar

-3
e

corralatio
patternas of correlationa tend to cluster cogether, that distance

er ia a function of the amount aof

o

from the center of a cluat
random error in the item, and that aa the number of latent traits
underlying tha data increases, the dimensionality of the
reprasentational space increasea. Cluster analysis using MDS
coordinates is asuggeated to isolate homogeneocus sets of items,
whereas considaration of the S1 coefficient ia recommanded to

detarmine the number of latent traits in the dats.
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Datermining what a set af itenms really maasures remaina a problem
1 educational paychology today juat as it wasa fifty yeara ago. The
problem is that differing methodalogiaea for axamining the structure of
an item asat may yield different results, because their aasimptiona ané
techniques differ. Thia is not necessarily a drawback since this nmay
capture the richnesa of the data. The purpose 65 thia paper ia to

axaminie an alternative approach to determining the structure of set

of items using a combination of multidimenaional scaling and cluster

analyaisz.

Inveatigationa into the atructure of a met of itemas fr juantly

(LI

reaqg
invaolve one or more of three questionas: whether the items are pervadeaed
by a single underlying trait: how many traits pervade the data if the
itema are not unidimensional and which items are related to whiech
traits; or which itema are sufficiently aimilar that theay géuld be said
to conatitute a unidimensional set of itema. Assessing sets of items
for unidimensionality or forming unidimensional aeta of items has
become increaaingly important since the davelopment and implementatiaon
of item reasponse theory (IRT) bacause most acaling procedures currently
require local independancea and unidimenaionality. No definitive
nethodology has yet been advanced for tegting for unidimensionality and
Lord (1980) has pointed ocut the need for auch a tast.‘ Te the axtent
that the asaumptions of the IRT models are not met, parameter eatimates
will be inaccurate.
>nal IRT models have been proposed and/or invastig ‘tad
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by a number of researchera including Bock and Aitkin (1981) and
NcKinley and Reckase (1982a, 1982b, 1983). However, in order to
eastimate parametars of such models, it is necesaary to know how many
latent traitsas underlie the data. Thua, techniques for determining the
number of dimenaions underlying the data are necaasary for multivariate

s
as well as univariate modela. Classical apprﬁaéh ea to teat theory have

providing a =ingle test score for a subset of items. Content validity
atudiaes have required that the tesat developar determine whether items
which are asaumed to share a commen trait do, in faet, share the same
trait. Thus, while the problems of dimensicnality assassmant have

1



racaived much attention in recent years, the need for technigues to
permit determining what a set of items measures ia not new and is not

solely related to IRT.

Linear Techni

Classical principal components (PCA) and factor analyasis (Gnanade-
sikan, 1977) have frequently been used toc determine the underlying
structure of the data. In the PCA medel, individual respecnses sre
asaumed to lie in a apace whosae axes (not necesasarily orthogonal) are
fcrﬁﬁ% by the p items. The goal of PCA ia to form orthogonal linear

c

that aach linear combination accounta

pe g

combinations of the items su
for a maximum amount of the residual variance left unexplained by
pravioua linear ccmbinations. The first principal componant ia
aaséntially a least-aguaraa éagrassiaﬁ of a latent trait on the iten
reapongea; it accounts for more variance than any other posaible
combination of itema. By auccessively extracting linear combinatiens
vwhich maximally account for residual variance, orthogonal axes are
formaed. If the matrix of interitem correlations is less than full rank

or if it can be detaearmined that only the firat k (< pl principal

variance, a. space of smaller dimenaionality is considered sufficient to
contain the atructure represented by the original data. The principal
componenta which constitute the axes of the aclution may be interpreted
as reprasenting unseen factors underlying the data. If a aingle
principal component appears to account for a sufficient portion of the
variance, then the set of. itemas is said to be unidimenaional.

In tha factor analytical model, =ach observed variable is assumed
to be comprised of a weighted linear combination of latent (i.a.,
unmeasurable) variablea called common factors which account for the
common variance among the ohaserved variables as well as a unique latent
varjiable (called the apacific factor) which accounts for the variance

unaxplained by the common factorsa. In this model, the obhserved

reaponse is regressed on the latent responsea, The PCA and factor
analyaia modela are very similar in their. approachea to the raductien

)




of the dimensionality of the original data aspace and will be :égafdéd
aa asasantially the same hera. l

Although factor analytical te echniquea would appear to be ideally
suited for determining dimensiocnality, several problems occur in their
use. Firat, there ia no set criterion for determining how many factora
or principal compeonenta to extract in a given analyais. Secondly,
factor analysis requires the apecific aassumption that the ocbserved
variables rapresent linear combinationa of the latent vgriahlaa. This
presenta problema for dichotomized variables. If a factor gnalys;a is
conducted on a matrix of phi correlation coefficienta <(which implicitly

asaume that the distributions underlying the variables are true dichot-
omiea), the model ia misapecified mince the regreasion of a binary
variable aﬁ a continuocua variable ia not linear (Hgﬁanald and Ahlawat,
1974; Mislevy, 1986). Since the range of the values of phi
coafficienta are affected by tha pairwise distributions of the meana of
the binary variables (i.e., the classical item difficultiea), the
magnitude of the phi coefficient is affected by the item difficulty as
well aa the atrength of the relationshipa among the variables. As a
reault, extranecus factora appaar which are raelated to the difficulties
of the items and not to any other amource of common variance among the
items. This clouds the issue of the true dimenaionality of the item
set. :
One potential solution to the problems listed above is to factor
analyze a matrix of tetrachoric correlation coefficients, which assune
that bivariate normal diatributions underly the pairwise distributions
of dichotomized responsea. While this sclves the problem of nonlinear
regressiona, it brings about other problema. First, if the asaumption
of bivariate normality is not met, the tetracheric correlationa will
not reflect the true relationships among the variablea. Second,

tetrachorie correlation ccefficienta are not directly eatimable.

of » = 0.5. More complex estimation procedures uaing Gauass-Hermite
quadrature or Newton-Raphason iterationa have been suggested by
Castellan (1266), Kirk (1973)>, Divgli (1979), and others. While these

3
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echniquas improve the accuracy of the computationsa, they can beconre

t
unatabla vhen one or mora cell proportions

of the pairwisea item
reasponaae table isa agtramal? amall. Thiré; tetrachorie correlation
probability of a correct response is influenced not only by latent
ability, but chance factors as uéllp resuiting in spuricua gusssing
factora (Carroll, 1945). While the correlationa can ba corrected for
gueasing, other rasaarch Ckggkgsa. 1981) haa shown that over- or under-
correacting yielda undesirable resu;ta.'ﬂthsr problems include large
standard errors (requiring the use of very large samples to- achieve
stability) and the patential for negative eigenvaluesa {an undesirable
feature when eigenvaluea are interpretad as amount of variance
accour:tad for).

Receant dgvaiapnants in factor .analysis have included the full-
information @saximum likelihood (ML) approach (Bock and Aitkin, 1981:
Bock, Gibbons, and Muraki, 1985) and the generalized leaat squares
approach of Muthén (1978). Thesa techniquea are. capable of dealing
with dichotomized data and provide a statistic for model fit which is

eymptotically distributed as chi-agquare. Howaever, the atatistical
a based on diatributional assumptiona which may be too
reatrictive for the variablea. Furthermore, for teats éf ﬁadagata

ai= a. very large aamplesa are required to insure the accuracy of the
as?mptntig approximation. In addition, reastrictiona are placed on the
numbgr of iteaema Hhieﬁ may be factor analyzed (acecording to Mislevy
(1986), 25 is an upper limit for the GLS procedure) or the number of
factors in the solution (1-3 for teats with 60 items in the ML
taechinigue).

From the above riigcussion, it appears that, although conventional
factor analyais and ’CA are usad to invesasticate the atructure of sets
of it

t
ems, the techniques are not without problens when dichotomized
data ares analyzed. Other procedurss for inveastigating data structure

a
are neceaeasary.




All the techniques described above are based on linear models. in
which" the reaponses to the items are rodaled by a waighted aum of
latant variablea. In contrast, multidimenasicnal acaling (MDS) modelsa

may be deascribad as distance modela. The fundamental task of MDS is to
racover the undearlying structure of a aat of data pa;nts given the

intarpoint distanceas, which ares asaumed to be raepressntad by a matrix
of experimaentally determinad proximity meaaures 5§473. In MDS, neither

the ccordinatea of the objects being scaled nor the correct number of

dimensions (i.e., the correct number of coordinate axea) ias known.

caga under cén;idi:gtign hﬂr-. 513 is 2 measure of the aimi;grity of

itams i and j, for axumple, &2 corralation coefficiaent.

"
i}

For a rapraassntational apace in k dimenasions, a vector
obtained for each item which gives its (unknown) coordinates in the k-
dimensional space. Then the distance of ebject i from 3 in the space
may be given by the Euclidean distanca:

2 .1/2 €15
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The Euclidean diatance, unlike aome other distance neasures, ia

invarient under orthogonal axis translationsa

In general, dij will not aqual §3i3] because of error in the data or
bacause k is less than the true number of dimensiona in the space of

the data. 1In nangétr;; MDS, the coordinates of all xji are obtained
sgﬁjact to a mencotonicity constraint, i.e.. &§33 < §1-3- implies that
dij £ di-37. In other worda, the rank ordera of the diatances dij are
essentially the same as the rank orders of the similarities $1{31, a much
leas reatrictive conatraint than an equality constraint and in general,
representational spaces cbtained in nonmetric MDS will be of lower
dimensicnality than in matriec MDS where the equality constraint holds.

' To measure how closaely the rank orders are preserved in the k-
dimensional MDS configuration, a procedure called meonotone least
agquaraesa or monotone regression (Gnanadesiltan, 1977) is carriad out on
5
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the dij te y;élﬁ disparities djj. Kruskal has proposaed a quantity
which he calls the STRESS, S, aa a badneass-of-fit measure:

Zd, = d, 22 %
s, = 13 43" . (2>
£ d2
i)

@ that the original 6§33 are only indirectly represented in 57
through their aeffact on the rank ordera of the disparities. Varianta
af this measure- have been proposed by Kruakal (1964), Takane, Young,
and deLeeuw (19277), and Guttman (1968).

While S) represents the fit of the configuration in the k-
dimenaional space, little is known about ita distribution except that
S1 decreases aa k increases. Empirical resultas led Kruskal to suggest
that values of .20, .10, .05, .025, and 0.0 represent poor, fair, good,
exééllant; and perfect fits, reapaetivaly. Kruskal and Wish (1973)
have auggeatecd that a value of .15 for k = 1 suggeata strongly that the

data are unidimensicnal. Suggssticns for choosing & representational
space have included a scree-like tech hnique examining plots of S1 vas. k

for albowa and selecting a value for k where a sharp bend ceccurs.
Othar poasasible techniquea include comparing Si1 va. k plota for =similar-

ity to simulatien resulta for data generated with a known structure.

Given that MDS ia capable of raggvaring the atructure in dats
under a = a
analysia, it would appear to be a potential solution for the procbhlem of
dimensionality analysis with dichotomous data. While factor a8
raeguires the use of Eafralatign caoafficientas cr covariancas
requires that the similarity measures be ordered. Given the leas
reatrictive nature of the hypotheses in MDS and the problens
encountered to date in uaing factor analyais with dichotomous
variebles, it iz aurprising that so little research has been done on
the use of MDS in thia particular application. While studies have been
conducted uaing MDS on dichotomouas data to determine the atructure of
the data (Korpi and Haertal 1984; Thomas 1984:; Koch 19833, the efforts

9




in these atudies have baen directad toward comparing results with
factor analysea on real data or in interpreting MDS results on real
data. The true dimenaionalities of the data sets are unknown, thea

atudies cannot definitively establish the validity of MDS in
determining dimensionality.

Determining the number of dimensions unda:lying the structure of
the data ia more complex than aimply determining which rapragsentational
aspace haas a amall ancugh value of S51. For exampla, a two-dimen
plot may reveal a aingle curvilinear dimension (Gna nadesikan 1977).
Thus, the appropriate dimensionality may differ from that suggéstaé by
the S1 coefficienta. Alternative techniqueas to examinin ng values of 54
have baeen proposed. One procaedure is toe conduct a elgstar analysias on
the scaled items uaing an hierarchical clusi:ering algorithm to reveal
the data atructure. Thus, two distinct cluatersa in a single dimension
on an MDS plot might indicate that two latent variables underlie the
data. Kruskal and Wish (1978) also suggested combining cloaseness
information from the MDS plota with gfﬁximitiég information. This can
be done by connecting all data points in the plota whosa proximities
exceed a certain threshold value. Thia technique is especially useful
in rev lali,g curvilinear astructura )
While Guttman (1965) recommended that theae techniquea be used in
place of analysia of 51 values, Kruskal d Wish ¢(1978) have suggesteaed
that the
in the data. They point out that the problem of dimensionality

an
rasearcher usze any neceassary procedure to search for structure

4sassament goea beyond a simple examination of S values or asearching
for clustara cor regiona in tha data. They also point cut that the
problem of determining the correct number of dinmensiona to represent
the data (i.e., the number of axes required for the data met) in an MDS
acaling is not equivalent to determining the true dimensionality of the

data =at.

10




3 -} a atan
which interpretation of the axes may differ. In the linear
data pointa which are p-dimenaional vectors of responsea to the p items
are plotted in apaca. The data pointa are the reaponse
individuala to the items and the axes are the dimenaions described by
the itema. A subapace in which the axes are linear combinationa of the
itema is obtained. Thesa linear combinations constituts the latent
variabias of the PCA. In MDS, p itema are plotted in a space of =zone
unknown dimensionality and a parsimoniouas rapre=sentation of that
dimenaionality ia sought.

The axes of the MDS configuration need not represent latent
variables and even if they do, they need not represent the same latent
variablea aa the PCA.. Thus, MDS must be regarded ags an glternat;va
approach to dimensionality assesament rather than a more gaﬁeral

varaion of PCA.

Monte Carlo Simulation Studies

ly two studiesa have bean fgundiuh;;h compare the
»f MDS with other taechniqueas for recovering
diméngiangl;t? in artificially-generated, dichotomized data of knawn
ality and structure. Zwick (1986) asuccesafully used MDS to

dimensio
=] f itema with Guttman sealiﬁg_ She

na
racover the dimensionality of a set of =]
auggested that recovery of a aingle dimenasion from such items be used

as a criterion before uaing any procedure for dimenasionality
aaaeaament. However, she found that thea results from an MDS analysis
actual data set were less clear.

Reckase (1981) aimulated 24 data sets consi
1000 individuala to S0 itema. Of these data sets, 19 were
unidimensional, 3 had two factora, and 1 each had three and nine

factora. Itam difficulties were n@rmally or rectangularly distributed:;

ating of responses of

and gueaaing pgrgﬂéﬁaré were aaaumed conatant for the data aset or
narmgll? éistr{butgd around Expaztéd values ranging from 0.0 to 0.75.
a

11




orthogonal and cblique solutions), MDS, cluster énglysig; and item
reaponse theory in recovering the true dimensicnality of the data sets.
For the PCA and factor analysis investigations he used phi,
tetrscheric, and corrected tetrachoric correlation coefficienta. For
the MDES scalings he used 13 different aimilarity coefficiaents
{agreemasnt, approval, eta, kappa, koppa, phi, #/Tpax, tetrachouric
(corresziad and uncorrectad for guessing), Yule‘’s Q, Yule‘’s Y, gamnma,
tau B, and Lijphart’s index). MDS techniques were effective with
aimulated data, but he felt that they failed to give an indication of
the dimensionality of a set of real itanra. ‘

Several important findings emnarged from the Reckase study. First,
the type of similarity coefficient used affected the magnitude of the
e not affected by iten
nd Yule’a @, in

value of S53. “"Margin-free" coaefficients (thos
difficulty) such aa the tetrachoric correlation
genearal, had larger values fior S31 than “mar
such aa phi and agreement. Second, the cgnf;gurgtign of the items in
the MDS plots was affected by the type of similar (=]
Furthermora, gueaaing tended to degrade the clarity of the pl
because it added random error to the aimilarity coefficients
their rank orderings. Difficult items were affected more than easy
itema. Reckase rep orted rasults for twa—dimansinnal scalings only, so
it was not glaar what effect additional dimenaiona would have on the
mragnitudes of the 51 values and the configurationa of the items in the

hosen representational space. Furthermore, since he was primarily

1]

o
ntereasted in the effects of gueasing on the plots, hé did not vary the

p.

atrangtha of the item-lstent dimension relationahip within a given
number of latent dimensicns.

Tha failure of the Rackase and Zwick studiea to achieve
interpretable results for a MDS scaling of actuai data when simulation
resultis are so promiaming ia puzzling. With this in mind, this study
waa undertaken to inveatigate possible reasona for these failures and
to determine the role of the atrength of the relationship of the item
to the latent dimension in the scaling of items. Since MDS has been
used to interpret actual data, additicsnal simulations are needed to

determine the validity of this technigque for interpreting data.

9
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Methodology
'ha reaearch questions addressed in this study are, specifically,

m-]

1. Are methoda of dimensiocnality asaseasment using MDS effective in
recovering the true dimensionality of aete of items which have been
dichatgm@ﬁsly scorad?

2. Are methods of dimenasionality asasesament using MDS influenced
by the number of dimensions underlying the aata of itemsa, the magnitude
3 tha ralationship of the itema to the latent trait, the distributions
>f these magnitudes across the latent traitas, or the type of similarity

o m

naeasurement used?
3. Doea the type of similarity coefficient used in MDS affect the

ion made in sssessing dimensionality?

)

aecisa
4. How do methads of dimensionality asseasment uzing MDS caompare

naionality of a aet of

with PCA in terms of racovering the true dime
dichotomously acored items? Do they eliminate the preaence of ao-

called "difficulty* factors?

individual responses to a set of hypothetical items under a
multidimensional extension of the two-parameter logistic model (2PL)

{(Birnbaum, 19€8):

o
»
[}
R
ot
1]

[
|
|
|
~
o
ot

ot
]
o)

This model ia essentially the same as the multivariate ara
logistic model proposed by Reckase and McKinley (1983) who modified the
nodel acmewhat to cope with problema of estimation.

In erder to replicate test conditions approximately, item location
arameterzs (bj) were generated using the astandard normal diastribution
(for dsate seta with one, two, or three dimensiona) or the uniform U(-
#*3) distribution (for one-dimenasional data sets>. Item

3
discrimination parameters were apecified at fixed values or, in cne

10
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casa, ganaratad from a uniform distribution ranging between .3 and

2.0, Table 1 preaents detaila of the simulated item seta. When
ability can be aasumed to have a atandard normal distribution in the

population and there is no guesaing, the relation between the item
discrimination parameter aj and the correlation coafficient with the

a
latent trait (the factor loading given in Table 1) is given by

(1L = ~_2)

(gsee Lord, 1980). -<Tip represents the correlation of the item with the
latant trait.

A vector of abiiities (with length determined by the specified
dimensionality of the item set) waa ganerated for each individual.
Abilities were assumed te be normally and independently distributed
acroas and within individuals, that is, not only waa the ability of one
subject unrelated to that of another subject, but alao ability on one
dimension was aasumed to have no relationahip to ability on any other
dimension.

Dichotomized responses to the itema were simulated for each of
1 i832 (= Pi3) to a

1000 individuals uasing (3) and comparing P(Xji3J
U¢0,1) random variable Rij. If Pij < Rij, Xi3
Similarity matrices ware than generated from crosas-clasaification

1, otherwise Xjj3 = 0.

tablea for reaponses to pairs of items. Six coefficients were selected

-
for thias atudy, three margin-sensitive (agreement, phi, and kappal, and

three margin-free (E/Fpax, Yule’s 0, and the tetrachoric correlation).
It was felt that thease aix cocefficients would give an adeguata

repraaentation of the typea of results to be expected. Their formulas
are given in Raeckasa (198112, f

Each aimilarity matrix waa acaled using nonmetric MDS analyaas in
one to five dimenaiona. Euclidean distances were specified for
comparability with other analyaea and because computational algorithma
are more afficient and more robust when the Euclidean metric is used.

The acaling was carried out using the Kruaskal algorithm in the MDS
| 11

14




géagadea in the SY3TAT statigtical package (Wilkinson 1984) which is
avajilable for the IBM PC.

For comparison with reaults which would be ebtained uasing
traditional methodologiea for dimensionality asseassment, PCA waa
carried out using the FACTOR package in Sysatat. (This package does not

0

include a traditional factor analysis package, but does permit rotation
of a reduced set of principal componenta.) Analyses were carried out

on both phi and tetrachoric correlation matricea. The magnitudea of

ppropriate number of prinecipal components to retain.

Valuea of 51 and the S1 by k plota were examined to determine
whaether they suggested an appropriate siza for the representaticnal
apace in MDS. Two-~ and higher-dimensional plots of scaled results were

r

examined for configurationa suggeating the dimensionality of the data.

Choosing a Reprasentational Space
Thae magnitude and the behavior of the S1 coefficient were found to

-
o]

be a function of the numbar of dimensions in the data, the amocunt of

random error in the data, tae typa o imilarity coefficient used, and,

f a
for margin-sensitive coefficients, the distribution of iten
difficulties. S1 increaased sas the amount of random error in the data
increased (i.e., as the aum of the agquared factor lecadinga decreased).

hange in slope in

0

=0
Furthermore, aa the amount of error increased, the
the graphs of S1 va. the number of dimensions also decreased. This
nade determining the appropriate number of dimensions more difficult.
Figure 1 presents the S; values obtained by ascaling data sets 19-21 in
one through five dimensiona uaing an input matrix of agreement
coefficiants. These data sets are three-dimenaicnal with similar

o
factor structure; however, the sum of the squared factor loadinga are

tur a
-81, .25 and .09, reaspectively. The change in slope of the graph is
abrupt at a three-dimensional solution for data set 19, leaa abrupt for

a
data met 20, and difficult to determine for data set 21. The magnitude
iz

15




of 51 riasas st eadiiy acroass these data seta for a given

ty Figura 2 represents S1 values obtained by scaling

etrechoric coafficiante for the same data aet. A clear
n

the grapha for data setas 19 and 20 and that

difference appaars batwean
for data smet 21. This graph was somawhat unusual for two reasona. The
ragnitude of 51 increased slightly with increasing dimensicnality in
the representational space for data set 19. This effact was
encounteraed occasionally in situations where the magnitude of 51 was
low and wasa ;aﬁsida:ed of no importance. Sacondly, the magnitude for
51 wasa approximately the aame for data aet 19 aas for data aet 20. The
one clear difference is the lack of an elbow at a two-dimenaional
solution for data set 20. Concluaiona regarding the number of
dimensions in the representational apace be difficult to make for data
gset 21. Furthermore, thae number of dimenaions would differ according
to whether the agreement or the tetréchoric coefficient was being used.
For unidimenaional data sats 1-9 a one-dimensicnal
representational space gave low valueas of S1 [< .15] when margin-
sanaitive coafficients were scaled. Aa the amount of randem error in
the data increased, S1 increased. For the margin-free ccefficients, Si
was very high (.4-.5) for a one-dimensional gsolution. It tended to
drop off steéd;ly with no sign of an elbow. Thisa precludeas the use of
a criterion value such as .15 for determining the appropriate number of
dimensions in the representational apace when margin-free coefficients
ara used, However, such a eriterion might be useful if margin-
sensitive coafficients were acaled.
For the two-dimensional data, an examination of 51 for margin-
enaitive coefficienta suggeated a two-dimensional representational
apaca. However, it was more difficult to determine the agprapriaté
imensionality for data setas with subatantial random error (e.g., 12).
in these data seta, S31 values were high and no elbow was clear in the
graph. Margin-free coefficientas generally had low values of S1 for a
ana

one-dimensional representatio space, although the value, again, was
arror

affected by the amount of random error. In data sets 15-18, the 5;
aefficient behaved as if the data were unidimensional.
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The three-dimensional data yielded soclutiona which were similar
for the two-dimensional cata except that one additional dimension was

neceasary in the solution. Thia suggests that when a data set has k

latent traits, k dimensiona aré& required for =caling margin-sensitive

W\

coafficientas and (k-1) dimensiona ara required for margin-fre
coefficients.
0f the margin-sensitive similarity coefficients used, the
agreement coefficient had the loweat S1 valueas and was the least
te

1aitive to random error. When coordin a8 ware examnined for itemns

en =
scaled using a matrix of agreement coefficientzs, it was clear that one
dimension in the representational space was simply item difficulty.
While the kappa and phli coefficienta were alaoc mensitive to item
difficulty, the effect was less strong, since the effect of item
difficulty on these coefficlenta ia a restriction of range. While it
waz not difficult in most cases te determine an appropriate number of

dimenzions in the represantational space using the agreement

coefficient, it waa conaiderably more difficult using the kappa and phi

coafficienta. For unidimenaional data, t coefficienta ranged

agreaman
batwean .02 {(for data set 4) and .29 (data =et 9).
Data sets with rectangularly distributed item difficulties tended
to héva'lawar S1 values than their normally distributed counterparts.
uniformly distributed along the
a

This iz probably becausa the itema ar

]
scala of difficulty. As a result, they are more spread ocut, making
evara in rank ordering leass likely.

ala
Although the tetrach

oric correlation coefficient tended to vield
51 valuea which were similar to those for Yule’a G, it occcasionally
Yieldad much smaller values when factor loadings were high.
Examination of scale values and item plots indicated that a difficulty
dipenaion waa present for the tetrachoric correlation. This was not an

>t of the acaling procedure, since the same effect was noted when

]
L1
ct
-
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]
f

PCA wof*carried
No simple recommandaticna can be made regarding choice of an

ut on the natrix of tetrachoriec correlaticons.

0

appropriate representational apace from these reaultas. When a sharp

elbow is present in the plot of S1 by dimensions, a choice of the

appropriate number of dimensions is clear. If the initial level of
i4
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stress is low, a one-dimensional régfasahtgtggnal space ia appropriata.
Howaver, as will be seen from an examination of item plots, the
interpretation of this space differs aomewhat between margin- sengitive
and margin-free coefficientsa. When no low value of atresa is reached
for a reasonable (as defined by the researcher) number of dimensions,
item plots will have to be examined to determine whether they cast

additional light on the issue.

Resulta of Examination of Eigenvalues

PCA tended to yield good resultsa with the simulated data. Thisa
was expectead, asince the data were ganeratad using a model for which PCA
should be maximally affective. This might not be the case for data
with a nonlinear underlying madel.

The ragnitudes of the eigenvalues were affected by the number of
dimensions in the data, the amount of random error prasent in the data,
the difficulty level of the items, and, when an item loaded on multiple
factors, the diascrepancies between thoase loadings. Except in the cases
of data seta containing fewer factor astructures than factoras (for
example, data setes 16-18), PCA yielded solutions with as many or more

eigenvalues than factors. Spurioua factors due to difficulty
both phi and tetrachoric correlstion coeffi-

=]
1]
B by

kely to oecur when correlations with the

latent factor were high. The tetrachoric matrices in such instances

corresponding matrix of phi coefficienta. Figure 3 presents grapha of
eigenvalues obtained in PCA of three-dimensional data sets 19-21 uaing
Phi coefficients. Figure 4 presents resultas of analyses on the sane
data sets using tetrachoric correlations. As the amount of randonm
error increased in the data, the magnitudes of the eigenvalues of the
firat three prinecipal components decreased. Since the phi coefficienta
tended to yield lower eigenvalues for the primary prin:ipal componentsa
than the tetrachoric coefficients, result, the elbows in the graph

appaared leass well-defined.
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Two additional things were found to affect the magnitude of
eigenvaluea corrasponding to principal components regardless of whether
phi or tetrachoric correlations were analyzed. Firat of all, the
nagnitudea are affected by the heterogeneity of the correlationa with
tha latent trait in multidimenaiocnal seta. In data sets 10-12 and 19
21, each itenm loada ~= "ly ona of the k ( = 2 or 3) factors in the
item set and the firat k principal compeonentas are approximately agual.

In data sata 13-14 and 22-25, a= the k factor loadings become more

homogenasous, a single principsl component tends to dominate the
eigenvaluea. Secandly, the magnitudes of the principal components are

affected by the heterogeneity of the itema. Data sets 16-18 are vary
similar to data sets 13-15 except that all items have the same factor
loadings on each factor. Whereas data sets 13~15 had a dominant factor
and a anraller second factor, data sets 16-18 had cnly one dominant
factor. Thase findings have two implications. First, the principal
components need not correapond to the original generating latent
traita. This has implications for interpretation of principal
orponenta. Second, the dimenaionality of an item is a& funection of the
sat of items within which it occurs. This isa an example af Bejar’s
{19a3) atatement that dimensionality, like reliability, is situation
cific. Clearly, thia haa important implicaticns for test aquating.

mw
o
1]

While data setas 13-15 appeared to have a aingle dominant factor
and a substantially smaller sacond factor (acecerding to eigenvalue
anai?gis}; many researchers would declare the set of items to be
unidimenaional. On the other hand, S1 by dimension plots clearly
showed that these itema were behaving in a similar fashion to data sets
10-12, It may be, then, that MDS, because it does not attempt to fornm
linear combinsationa, is better at recognizing dimensionality. 51 by
dimension plots for data setas 16-18, howaver, behaved like those for

unidimensional data aets=, The reason for thia will become clear in the

next asection.

Exanination of MDS Plo
] ated iﬂ the MDS representatiocnal space according to

The items with the highest similarity cocefficients

their similarity.
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will be the items with the most similar factor loadinga. Az a result,
items with similar factor loadingas tend to cluater together. This
affect was apparent in all data sets regardleas of the type af
aimilarity coefficient used. However, the margin-sensitive
coaefficients contained an sxtra dimenasion due to difficulty which
Pulled the cluaters apart giving a linear appearance. The appearance
of the line varied with the type of margin-sensitive coefficient input
intos the scaling algorithm. Sinee the scaling results are essentially
the ~ame axcept for differences in appearance cauased by the difficulty
dimenaion, results will be discussed for the margin-free ccefficients
firat. Data sets 1-9 all yvielded a single cluster or disk of items.
Aa the amount of random error increased, the diak tended to pull apart,
but it wasa atill EQEﬁgnigabla as a =z2ingle structure. Data seta 7-9
contained items with different factor loadings on the gingle factor.
Figure 5 presents results obtained for data set 8 for a acaling of
Yule’s Q@ coefficients. Items labeled 1, 2, and 3 correlated £ 9 .6,
and .3 with the latent trait, reapaectively. When the itema in these
data seta were acaled, the itams moat closely related to the latent
trait appaared on the interior of the cluster in a amall region. As
the relationaship of the items to the latent trait weakened, the items

ware moved away from the center of the cluater and spaced in concentric
ir

\nw

cles about the center. This suggests that the magnitudg of the
=

Hy

acto:
Az the number of dimenaioneg in the item set increased, the number
ned. Data seta 10-15 vielded two cluatara of itenms:

of cluasters increasased. Data sets 10-15 vielded
data asets 19-24 yielded three cluaters of items. Figure & showa
scaling results obtained for a matrix of tetrachoric coefficients for
data set 19 which had factor loadings of .9 on one of three factors.
Itema related to the firat, second, or third factor are identified with
a 1, 2, or 3. Three clusters are clearly viaible here (although two
itema trail from the clusters). v

Aa noted previously with the unidimensiocnal data, the tightneas of
the clusters decreased as the amount of random error in the data
increased. Examinstion of the item plotsa suggeated why the orne-
dimensicnal MDS sclutionas for the margin-free coefficients had such
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high 31 values. When two- and higher-dimensional data are sca’ed,
differences among itema due to random error are amall compared ‘o
differences due to asscciation with different combinatlons of factors.
As a result, rank orderings of item distances are likely to contain
fewer large differences in rank orderinga resulting in a lower 51
valua. When one-dimensional data are scaled, differences amnong items
are caused only by random error. Rank orderings are random and result
in a high S1 value. For n gbjegts. n-1 dimensionsa sre required to
When the correlations are low, there are substantial arocuntas of
random error to account for, and, acecordingly,., thease items are scaled
farthér-iran the cluster center. For the mrultidimenaional data sets,
the differentiation between the clusters tended to decrease as the
anocunt of rardom error increased. This iz becauae the systematic errcr
component (the componant which influences the separstion of the cluster
centers) becomea amall relative to the random error component (the
component which influencea thas distance of the items from the cluster
centera’. As a result, the less reliable items tend to averlap.

When the three-dimensional data were scaled, clusters were located
at items with identical loadinga (but on different factora, as
in data aets 19-21) were equally distant from each other. Whereas this

can be done on a line for two-factor data, an egquilateral trisngle is
required for three-factor data and the representational space will be
raquired to have two dimensions. Thias asuggestas that a k-dimensional
latent space will require (k-1) dimenaicns in an MDS space (unless a
difficulty dimension is required). The vertices of the triangle na 3y be
conaidered to represent the simplest factors. For example, items 1-13
in data set 19 would form a cluaster at one vertex, items 14-27 would
form ancother cluster at a second vertex, and the remaining items would
form the third cluster at the last vertex. The number of diatinet
factor structures in the data controls the number of clusters. For
thia resason, data sets 13-15 will form two clustera aven though the
itema are highly related to each other. However, their separation will

ne controlled by the relative atrengths of their loadings on the latent
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variablea; the differentiation of the clusters will be cantrolled by
the magnitudes of the loadings on the latent variables.

Data sets 27-29 provide an illustration of the above point. Two=
dimensional MDS plots are presented for these data in Figurea 7=9. In
data set 27, three clusters are distinctly visible. Itema which are
related to the firat factor (labeled 1) are located in a cluater on the

(labeled 3) on the right. Items which are related to both factors
(labeled 2) are located bestween the two single-factor cluaters. Since
they are equally related to both factorsa, they are spaced midway along
the line jJoining the centera of the twe single-factor clusters. Itens
1-13 and 28-40 are highly related to their respective factors and their
dispersal from the cluastar center is small. The two latent factors
account for only 350x of the systematic variance in items 14-27 (as
opposed to 8l% in the remaining itemsa), so the cluster appears more
diffuse. in data set 28, itemas 1-13 (labeled 1) were nore heavily
related to the firat factor than the second (.7, .3), items 14-28

a

(labeled 2) were related equally to both factorsa (.5, .5) and items 28-
40 (labeled 3) were more heavily related to the mecond factor than the
first (.3, .7). The results in Figure 8 show that, again, three
clustera were formed with the items equally related toc both factors
located toward the center of the plot. However, the clusters on the
left and right sides af the plot were mere apread out than in data set
27 where factor loadings aceounted for 81% of the variability. In data
gaet 28, the fﬁetgrg only account for S8% of the variability in the
firat and third eluaters. Differentiation among the clustera was
accordingly less clear.

Data aet 29 yielded the moat informative result.a. The plot
obtained by acaling tetrachoric correlations for this dat
in Figure 9. Here there are aeven distinct factor structures, with
items loading on one, two, or three factors. Single factor itema were
scaled in cluaters according to their factor relationsghip (i.e., items
1-6, 7-12, and 13-18 were ascalad in three separate clusters labeled i,
2, or 3. Thegeicluatazé were equally apaced as in data seta 19-21.

The clusters containing homogeneous sets of items which loaded on two
19
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hree factors (labeled 4, S5, or 6) were located near a lin
rawn between the two verticea of the triangle containing the fac
e uast

items ware raelated. Thus, if a cliu

>tor 2. The cluater was located closeat to the
ich it was moast highly related. Therefore, a cluster
containing items generated from (.7, .3, .0) factor loadings was
ated between the clustera generated by (.9, .0, .0) and ¢.0, .9, .0
closer to the former than the latter. The cluster
containing itema generated by (.5, .5, .5) factor loadings (labeled 7)
was located at the interior of the triangle. As items take cn a more
complex factor atructure, they will be pulled away from a line or a
peint toward other factora on which they load. This suggests that a
tetrahedron in three dimensiona will be required to represent a four-
factor structure and that items will be located in the interior of the
tetrahedran if they relata to all four factora.

These findings have important implications fer assesament of
dimensicnality in MDS. An examrination of the cluatering in MDS plots
will help to isclate mets of homogenecus items. However, if the goal
of the MDS procedurs is to determine the number of latent dimensions
present in the data, the magnitude and behavior of the 51 ceoefficient
nuat also be considerad.

Plota for the margin-senaitive coefficients appeared quite ‘
different because of tha presence of a dimension related to diffiaulty.
phi coefficienta, itema were arranged in a line with the mast difficult
items at one end and the least difficult at the other. For the
agreement coefficient, the line was atraight. However, for the kappa
and phi ccefficientsa, the line was in the shape of a horseshoe. *An
examplae of the type of ploet obtained is shown in Figure 10, which shows
the resulta of scaling kappa coefficients in data set 1. Items are
ordered by difficulty with A the easiest item, progresaing through the
alphabet to numbera and aymbola. Note that while two dimensions are

reguired to represent the graph satiasfactorily, a single curvilinear
dimenasion could be hypotheaized for the data. The kappa coefficient
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waa specifically suggeasted to deal with the problems of chance
agreement due to marginal distributions, soc it should be leas sensitive
to Ltem difficulty than the agreement ceoefficient. However, both kappa
and phi have ranges which are restricted by diiféféﬁéggéiﬁ item
difficulties; hence, their valuea are atill affected by item

difficulty. Thia is especially true at the extremes of the

Lo

distribution and may help to account for the curvilinear effect.

Aa the correlation of each item with the latent trait decreased,
the clarity of the plota tended to decreasa. The phi coefficient was
somewhat more affected by thia problem than kappa. As the random error
increased, itema tended to vary from the line or horsashoe daegrading

arity of the original shape. Plota using kappa coefficients
curvilinear forms other than a horseshce, while plotsa

the <l
tanded to take on
aing agraement coefficients tended to resemble a filled-in ellipse.
This increase in acatter about the “true" item location has already
been described for clusater-type plota.
Whan data contained two or more dimensions, ﬁlats using agreement

aefficientas took on a circular or elliptical ahape. Figure 11

co
praesenta resulta for s=caling a matrix of agreement coefficients for
data set 19. Items are ;QQElEdAE;E§fdiDg to the flactor on which they
load moeat highly, as can be séaﬁ; itemsa are scaled in arcs about an
axias. Examination of the item difficultiea showed that the axis was

related to item difficulty with eaasy items scaled at the one end and
difficult itema at the other. Items which were of extreme difficulty
or easiness ware closer together than items of moderate difficulty. It
appears that such itema are more like each other because of their
difficulty or easinesa than because of any relationahip to a factor.
However, since an item related to one factor must be aa distant from an
item of the same d;ffizulty related to another factor as it is from any
other item of the same difficulty related to a third factor additional
dimensions will be needed to represent the diastances in a satisfactory
nanner. For three-dimensional item sets this structure was similar to
a football.

- Plota for kappa and phi tended to resemble the plotas for the

margin~free coefficients as more dimensions were added to the data with
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itema ordered within the clusters according to difficulty. In general,
kappa, phi, and F/Tpax tended to hgve!plﬁts which were most influenced

by random error in the data and to yield the moat variable results.

]

For this reaann, their use is not suggested. Results for Yule’s Q and
the tetrachoric coefficients were very similar and either of the two
would yield good resulta. Except for occasional problems in values for
tha tetrachoric correlation with a relationship to item difficulty when
the correlation with the latent trait waa very high, either could be
used interchangeably. As previoualy ngtéd; the agreemant coefficient
ia suggeated when examining data for unidimengionality, since only the
margin-sensitive coefficients were capable of indicating a one-

dimensional solution for such data.

Thea cluatersa praaant in the HDS plgtg suggeasted that z=lusater
analysis might be appropriate for classifying items into homogenecus
aata,. While Reckase (1981) did investigate cluster analysaia as a

technique for identifying homegenecus item seta, he applied it directly
to the same aimilarity matrices used in the MDS. He found that many

[
Ly ]

items were misclassified even when the corract number of dimensiona
clustera) was used. Furthermore, he found that margin-senaitive
coefficients tended to group items of similar difficulty.

Although cluster analysis has a number of problems as a
clasasification technique, two are especially difficult for the
practitioner -~ ausceptibility to local solutiona (in some casesa, due to
the presence of outliers) and lack of measures for determin ng the
optimal number of cluaters in the salution. Ho
were clearly clustered, the technique was applied to the coordinates of
‘ pace (rather than the asimilarity
ed that the teshnigue would

the items in £hé MDS represesntational

m -1
matrices basmad on item datad. It was ho

"’ﬂ

permit identification of homogeneous item groupinga even if it did not
give information about the number of dimensions in the data. In
addition, uaing the MDS coordinates might reduce the senaitivity to
cutliera. The first two cluster analysis procedures used were gingle
linkage and complete linkage optiona in the CLUSTER procedure in the
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SPS55-X atatistical package (SPS55-X Usger’s Guide, 1986>. Euclidean
diatance measurcs ware used with the data. It was hoped that one of
these procedures would ba sucecesaful with the MDS rasults obtained from
the agreament matriceas. However, neither of these teachniques proved
useful in classifying items intoe clustera. Classification appeared to
be random and theae techniques were dropped. The acaling coordinates
obtainad for matrices of tetrachoric cocefficienta for data sets 27-29
(two- and five-dimensional solutiena) were input to the k-means
clustering program BMDPKM (Dixon, 19855. This technique is more
effective with the spherical-type clusters obtained in the MDS analysea
and gives information on the within-cluster and betwaen-cluaster mean
squarea for each variable (here, MDS dimensionsa’ to permit asseasment
of the relative importance of each variable in classifying the data.

In general, results of the k-meansa cluatering were good. No cases
were misclasaified when thraee cluasters wara specifiad for either two-
or five-coordinate MDS solutions in dezta set 27. When rore clusters
were specified than were actually needad, the algorithm =imply split
the larger center cluster into smaller onea. When fewer Sluaters were
specified than the correct number, the center cluster waas split so that
half the items which loaded equally on both factors were agsigned to
each of the single-factor cluatars. Significance tests on the
importance of each variable to classificstion révealéd that only the
fifg; dimension waa consistently uaseful in eia saiiying itema into
groupa. As the nunmber of clusaters requeated increased, additional
dimensions were required to separate the items into homogenecua groups,
but they were of agbgtantiaily leaa importance to the classifica ation
procedura,

More problema were encountered with cluster analyses in data set
28 which had leas differentiation between the clusters. Initial
analysea of both two- and five-dimensional data misclaassified about
one-third of the cases, primarily because clusters 2 and 3 were aplit

on a horizontal rather than vertical axis. Hawevefi when seed values

were misclassified for the two-dimensional data and only ane for the
fiva-dimenaional data. A similar problem was encountaered for the
23
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aaevaen-cluater solution for data set 29. Although all cases were
classifiaed correctly when the two-dimensional acaling results were
input, the five-dimensional data gave poor resulta. Howaver, after
sead values were apecified, only two cases were misclassified. This

suggesatas atrongly that the 1y —~mearcher ahould try multiple sclutions

o

with different seed values, particularly in regiona where clusters ar
auapactad. If results are atable for a number of sclutiona and if the
solutiona aeem reasonable, then the cluster solution may be accepted.

These results also suggest that more dimensions than necessary for the

MDS reprasentational space should not be input into the clustering

procadure.
One additional problem encountered in the analyaes was the lack of

a criterion for determining the aptimal number of clusters. Since the
plotting reaulta clearly auggested the correct number of cluaters, the
prablem was not difficult here. The C-index (Seber 1984) yielded poor .
reaulta and failed to indicate the correct number of cluatera. When
the statistic was medified to inelude only those variables whieh were
aignificant in the clustering, the results were very good. Hore
rasearch needa to be undertaken to determinae what, if any, indices of

cluatering may be useful.

i}

Conclusion
atudy, MDS has been demonstrated to be a

»

s in the Reckasa (
useful technique in clas

sources of variability in the data are well-specified. While Reckase

19a1)
sifying items into homogeneoua groups when the

waa interested in the effect of gueasing on MDS results, thia atudy has
focused on the effect of the relationship of the item with the latent

e differencesa have been found which may be due
substantial

dae the quality

variable. Although aso
to differences in ascal algorithmas, results are in

agreement. Rechase found that guesaing tended to degra
of the item plota. In this atudy, it was observed that as item

correlationas with the latent trait decreased, itema were more widely

o

oth casesa, the dispersion may

digpérsed about the cluster center. I
ror in the data; for the Reckase

-

n
be attributed to inecreased random error

study, difficult itema were most affectad, whareas in the present
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- study, all items were affected regardless of their difficulty level.
Although Rackase had one data set which contained more factor
structures than factors (and which yielded aa many clusters as
atructureal), for the moat psrt, the two variablea were confounded.
Thie study shows clearly that the number of clusteras is related to the
nunber of diastinct factor structuresa in the data; The results of this
study suggest that the number of factors in the data is related to the
number of dimenasions in the representational space, but that factors
and dimensions muat be distinguished in MDS.

0f the coefficienta used, three (kappa, phi, and F/EFmax? were

found to be particularly =mensitive to random error and their use is net

asuggested. Of those remaining, the agreement coefficient was found to
ba useful in casea where unidimensiocnality is expected in the data.

While it is sensitive to item difficulty, this dimenasion was clear on
the item plota. The tetrachoric coefficient and Yule‘’s Q are
particularly useful when the goal of the analysis is to isolate
homogenecus seta of items since they tended to yield clustered results.
Because of the tendency of itema to cluster together according to
their similarity, it is suggeated that cluster analysis of the MDS
coordinatea be éaﬁdugﬁad to isolate homogenecus sets of items. While
the tendency of the technique to yield solutions which are sensitive to
locali problems should not be ﬁ?éflégkéé,vﬁﬁmé of the problems may be
ractified by uasing seed values for cluster centera, This haa the

advantage of permitting the rggeargﬁa: aomea control over the solution.

apaces had toco many dimensions, it is suggested that no more than the
necessary number of dimensions be used for the analysesa. If Ltwo=-
dimenaional MDS results are adequate to determine the structure of the
data, then no more than two dimensions should be used.

These results deal only with simulated data. Further research
should be carried out to determine whether these results are

appropriate for actual test data. In addition, research needs to be

ugzeful in determining the coptimal number of cluaters in this situation.
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ble 1. Characteriatica of One-, Two-, and Three-

Ta

Dimensional Data Sets.

Data Set Factor Loading Item Difficulty Number of
Numbear 12 2 Digtribution Items
1 - - - Normal 40
2 «6 - - Normal 40
2 .3 - - Normal 40
4 .9 - - Ractangular 40
=1 .5 = - Rectangular 40
& «3 - - Rectangular 40
7 -9 - = Normal 13

;E = lé
i3 = - lg
a8 -9 = - Rectangular i3
-6 - - 14
=32 - - 13
9 U= = - Normal 40
10 .9 «0 - Normal 20
;Q QS = EQ
11 -3 .0 = Normel 20
-0 « 5 - . 20
iz P | «0 - Normal 20
ig -3 - 2‘:‘
R . . 2 - Normal 20
-2 -3 - 20
14 -7 .3 = Normal 20
!3 !7 = 20
15 . = -3 - Normal 20
- g’é = 2,13
ls «8 -2 - Normal 40
17 -6 «3 = Normal 40

* uniformly distributed factor lcadings (.3 through .9)
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Table 1. {(continued)

Data Set Facter Loading Item Difficulty Number of
Number 1 2 2 Diatributian Items

is .5 .4 - Normal 40
is .9 .0 e Normal 13
-0 .- - 14
.0 .0 -9 13
20 =] -0 -0 Normal iz
= .5 0 ’ T 14
=0 ) -5 i3
21 -3 .0 .0 Normal 13
-0 -3 «0 14
=0 -0 . | 13
22 «3 -2 -2 Normal 13
. 2 -9 -2 14
a2 -2 -9 13
23 .8 .2 .0 Normal i3
=0 -8 .2 i4
-2 =0 -8 13
24 =5 =3 «1 Normal i3
=1 =5 «3 14
-3 =1 3 iz
25 .5 s 3 -1 Normal 13
- -2 -0 14
- 3 M) «1 i3
26 -5 =5 -2 Normal 20
-5 -2 =3 20
27 .9 s - Normal 1z
-3 = = 14
4 ») -9 13
28 .7 « 3 - Narmal i3
) ;5 = = 14
=3 7 - i3

29 - -0 = Normal
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Captions fé: Figuras

Figure 1. S1 by dimenaion plot for three-dimensional data aets
19-21 (agreement coefficient).

——

Figufé 2. S31 by dimension plot for three-dimensiconal data sets
19-21 (tetrachoric coefficient).

Figure 3. Eigenvalue magnitude for principal components
analysaias of data msets 19-21 (phi cocafficiants).

Figure 4. Eigenvalue magnitude for principal components
analysis of data setas 19-21 (tetrachoric cocefficiants).

Figure 5. MDS resulta for one-dimensional data set ¢8)>. 13
itema .9, 14 itema .6, 13 itemsa .3 (Yule‘s Q).

Figure 6. MDS Results for three-dimensiocnal data set ¢19). 13
itemg f 9, G ﬁ) lé iteame (O, .2, 2) 13 itemas (0O, 0O, .9}

Figure 7. HMD5 Resaults for ~dimensional data set (27>, iz
itama (.9, 0>, 14 items . E S) 13 itaems (0, .9) (tetrachorie

coafficient).

Figure 8. MDS Resulis for two-dimenaional data set (28>. 13
items (.7, .3)>, 14 itema (.5, .5), 13 items (.3, .7)
(tetrachoric coefficient).

Figure 9. HMDS results for three-dimensional data set (29).
Mixed factor loadings (tetrachoric coefficient).

Figura 10. MDS results for one-dimensional data set, normally
distributed item difficulty (kappa coefficieant).

ults for three-dimensional data zet (19>

Figure 11. MDS res
afficient).
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